Abstract

In this paper a stochastic operational scheduling method is proposed to schedule energy and reserve in a smart distribution system with high penetration of wind generation. The wind power and demand forecast errors are considered in this approach and the reserve is furnished by both main grid generators and responsive loads. The consumers participate in both energy and reserve scheduling. A Demand Response Provider (DRP) aggregates loads reduction offers in order to facilitate small and medium loads participation in demand response program. The scheduling approach is tested on an 83-bus distribution test system over a 24-h period. Simulation results show that the proposed stochastic energy and reserve scheduling with demand response exhibits a lower operation cost if compared to the deterministic scheduling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call