Abstract

We report a highly robust, general and stereoselective method for the synthesis of 3-(chloromethylene)oxindoles from alkyne-tethered carbamoyl chlorides using PdCl2(PhCN)2 as the catalyst. The transformation involves a stereo- and regioselective chloropalladation of an internal alkyne to generate a nucleophilic vinyl PdII species, which then undergoes an intramolecular cross-coupling with a carbamoyl chloride. The reaction proceeds under mild conditions, is insensitive to the presence of moisture and air, and is readily scalable. The products obtained from this reaction are formed with >95:5 Z:E selectivity in nearly all cases and can be used to access biologically relevant oxindole cores. Through combined experimental and computational studies, we provide insight into stereo- and regioselectivity of the chloropalladation step, as well as the mechanism for the C-C bond forming process. Calculations provide support for a mechanism involving oxidative addition into the carbamoyl chloride bond to generate a high valent PdIV species, which then undergoes facile C-C reductive elimination to form the final product. Overall, the transformation constitutes a formal PdII-catalyzed intramolecular alkyne chlorocarbamoylation reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.