Abstract

Individuals with leg amputations who use passive prostheses have greater metabolic demands than non-amputees likely due to limited net positive work compared to a biological ankle. New powered ankle-foot prostheses can perform net positive mechanical work to aid push-off capabilities, which may reduce metabolic demands. Compare step-to-step transition work and metabolic demand during level and inclined walking using passive and powered ankle-foot prostheses. Repeated measures. Six individuals with transtibial amputation and six able-bodied controls walked at a standardized speed across level ground and up a 5° incline. Calculated measures included mechanical work during step-to-step transitions from the trailing prosthetic to leading intact limb, steady state metabolic rate, and ankle joint kinetics and kinematics. The powered prosthesis generated 63% greater trailing limb step-to-step transition work than the passive during level walking only (p = 0.004). Metabolic rate was lower with the powered prosthesis during level (p = 0.006) but not inclined walking (p = 0.281). The powered prosthesis increased ankle power compared to the passive, to the extent that power was normalized to controls during inclined walking and greater than controls during level walking. The powered prosthesis improved ankle power, metabolic rate, and step-to-step transition work on level ground, with few negative consequences on inclines. These results may be used to guide the development and use of actively powered prosthetic devices in high-functioning individuals. Overall, powered devices offer biomechanical and metabolic benefits over passive energy storage and return designs on level ground and perform as well as a passive model on inclines. The lower metabolic demand when using the powered device may delay fatigue for individuals with transtibial amputation when walking over level ground.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.