Abstract
Prosthesis features that enhance balance are desirable to people with transtibial amputation. Ankle inversion/eversion compliance is intended to improve balance on uneven ground, but its effects remain unclear on level ground. We posited that increasing ankle inversion/eversion stiffness during level-ground walking would reduce balance-related effort by assisting in recovery from small disturbances in frontal-plane motions. We performed a pilot test with an ankle-foot prosthesis emulator programmed to apply inversion/eversion torques in proportion to the deviation from a nominal inversion/eversion position trajectory. We applied a range of stiffnesses to clearly understand the effect of the stiffness on balance-related effort, hypothesizing that positive stiffness would reduce effort while negative stiffness would increase effort. Nominal joint angle trajectories were calculated online as a moving average over several steps. In experiments with K3 ambulators with unilateral transtibial amputation (N = 5), stiffness affected step-width variability, average step width, margin of stability, intact-foot center of pressure variability, and user satisfaction (p ≤ 0.05, Friedman's test), but not intact-limb evertor average, intact-limb evertor variability, and metabolic rate (p ≥ 0.38, Friedman's test). Compared to zero stiffness, high positive stiffness reduced step-width variability by 13%, step width by 3%, margin of stability by 3%, and intact-foot center of pressure variability by 14%, whereas high negative stiffness had opposite effects and decreased satisfaction by 63%. The results of this pilot study suggest that positive ankle inversion stiffness can reduce active control requirements during level walking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.