Abstract
We have explored two high-transition-temperature Josephson junction technologies for application in voltage standard arrays: step-edge junctions made with YBa/sub 2/Cu/sub 3/O/sub 7-/spl delta// and Au normal-metal bridges, and stacked series arrays of Josephson junctions in selectively doped, epitaxially grown Bi/sub 2/Sr/sub 2/CaCu/sub 2/O/sub 8/ heterostructures. For both kinds of junctions, Shapiro steps induced by a microwave bias were characterized as a function of power. We compare the technologies with respect to critical current and normal resistance uniformity, maximum achievable critical current, critical-current normal-resistance product, and operating temperature.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.