Abstract

We studied the gate controllability of the critical current and the normal resistance in superconductor–semiconductor–superconductor junctions. The junctions used a two-dimensional electron gas (2DEG) in the InAs-inserted InAlAs/InGaAs heterostructure. It is shown that the interface barrier between the superconductor and the 2DEG affects the controllability in a short-gated junction. In a split-gated junction, the critical current–normal resistance product is almost constant against gate voltage. This is due to quantization of both the critical current and the conductance in a narrow and short semiconductor channel. The long-gated junction in the quasi-ballistic transport regime shows rapid suppression of the critical current by gate voltage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.