Abstract

Vascular access dysfunction is the leading cause of hospitalization for hemodialysis patients and accounts for the most medical costs in this patient population. Vascular access flow is commonly hindered by blood vessel narrowing (stenosis). Current screening methods involving imaging to detect stenosis are too costly for routine use at the point of care. Noninvasive, real-time screening of patients at risk of vascular access dysfunction could potentially identify high-risk patients and reduce the likelihood of emergency surgical interventions. Bruits (sounds produced by turbulent blood flow near stenoses) can be interpreted by skilled clinical staff using conventional stethoscopes. To improve the sensitivity of detection, digital analysis of blood flow sounds (phonoangiograms or PAGs) is a promising approach for classifying vascular access stenosis using non-invasive auditory recordings. Here, we demonstrate auditory and spectral features of PAGs which estimate both the location and degree of stenosis (DOS). Auditory recordings from nine stenosis phantoms with variable DOS and hemodynamic flow rate were obtained using a digital recording stethoscope and analyzed to extract classification features. Autoregressive modeling and discrete wavelet transforms were used for multiresolution signal decomposition to produce 14 distinct features, most of which were linearly correlated with DOS. Our initial results suggest that the widely-used auditory spectral centroid is a simple way to calculate features which can estimate both the location and severity of vascular access stenosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.