Abstract

With the use of a wireless, wearable, passive knitted smart fabric device as a strain gauge sensor, the proposed algorithm can estimate biomedical feedback such as respiratory activity. Variations in physical properties of Radio Frequency Identification (RFID) signals can be used to wirelessly detect physiological processes and states. However, it is typical for ambient noise artifacts to appear in the RFID signal making it difficult to identify physiological processes. This paper introduces a new technique for finding these repetitive physiological signals and identifying them into two states, active and inactive, using k-means clustering. The algorithm detects these biomedical events without the need to completely remove the noise components using a semi-unsupervised approach, and with these results, predict the next biomedical event using these classification results. This approach enables real-time noninvasive monitoring for use with actuating medical devices for therapy. Using this approach, the algorithm predicts the onset of respiratory activity in a simulated environment within approximately one second.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.