Abstract
We report the observation of efficient steering of a 855MeV electron beam at MAMI (MAinzer MIkrotron) facilities by means of planar channeling and volume reflection in a bent silicon crystal. A 30.5 μm thick plate of (211) oriented Si was bent to cause quasimosaic deformation of the (111) crystallographic planes, which were used for coherent interaction with the electron beam. The experimental results are analogous to those recorded some years ago at energy higher than 100GeV, which is the only comparable study to date. MonteCarlo simulations demonstrated that rechanneling plays a considerable role in a particle's dynamics and hinders the spoiling of channeled particles. These results allow a better understanding of the dynamics of electrons subject to coherent interactions in a bent silicon crystal in the sub-GeV energy range, which is relevant for realization of innovative x-ray sources based on channeling in periodically bent crystals.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have