Abstract

Hybrid power supply systems (HPSSs) are considered as a good option for electric power supply of remotely located from the grid consumers due to significant fuel savings compared to diesel sets. Quick development and improvement of HPSSs may be achieved using specialized methodologies and programs. In the paper a schematic diagram is proposed and operation principles of a 400 V / 50 Hz HPSS were developed. The system’s main component is the master generating unit of the hydropower plant using a 250 kW induction generator (IG). The voltage of the system is controlled by the controller of the AC/DC power converter. The electrical frequency of the system is controlled by the speed controller of the hydropower turbine. A wind turbine, an energy storage system and a regulated dump load are connected to the IG through the AC/DC converter. Goal. The paper aims to develop a methodology for steady state performance analysis of the hydraulic turbine driven isolated IG operating in parallel through an AC/DC power converter with additional sources and consumers of active power. Methodology. The methodology for evaluation of performance characteristics of the IG operating in the proposed system has been developed. The methodology is based on the equivalent circuit of the system, equations of active and reactive power balance in the system and the superposition method. Results. The equations of frequency, voltage and power regulators of the system are given. The performance characteristics of the IG operating in the system supplying resistive and RL load in «constant voltage – constant frequency» mode are obtained. Novelty. The developed methodology is innovative in taking into account the control algorithms of the system. The comparative analysis of the IG’s performance operating in the stand-alone generating unit and in the generating unit connected to the proposed system is performed. Practical value. The developed methodology can be used for development and performance improvement of hybrid AC power systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call