Abstract
We investigate experimentally three-dimensional (3D) hydrodynamic turbulence at scales larger than the forcing scale. We manage to perform a scale separation between the forcing scale and the container size by injecting energy into the fluid using centimetric magnetic particles. We measure the statistics of the fluid velocity field at scales larger than the forcing scale (energy spectra, velocity distributions, and energy flux spectrum). In particular, we show that the large-scale dynamics are in statistical equilibrium and can be described with an effective temperature, although not isolated from the turbulent Kolmogorov cascade. In the large-scale domain, the energy flux is zero on average but exhibits intense temporal fluctuations. Our Letter paves the way to use equilibrium statistical mechanics to describe the large-scale properties of 3D turbulent flows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.