Abstract

In this study, a nonlinear active Hydro-Pneumatic (HP) suspension system is modelled. The HP suspension system model is then incorporated into the quarter car model and a nonlinear controller for the vehicle system is developed. A linear structured model with state dependent matrices of the nonlinear quarter car model is derived for use in controller design. A nonlinear control method, State Dependent Riccati Equation control (SDRE) is used to attenuate sprung mass acceleration, suspension deflection, and tire deflection. The performance of the controller is examined in both frequency and time domains. Active HP suspension system is simulated with sinusoidal inputs at discrete amplitudes and frequencies, and the approximate frequency response functions are obtained. The active HP suspension system is simulated with random road inputs and the root mean square values of the responses are used to evaluate the performance of the controller. The results show that the active suspension successfully and simultaneously decreases the sprung mass acceleration, suspension deflection, and tire deflection around body bounce frequency and thus improved ride comfort and road holding are obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call