Abstract

This study investigated the performance and microbial community dynamics of a start-up method for the partial nitritation-anammox (PN-A) process: start-up from return sludge in an intermittently aerated sequencing batch reactor (IASBR). The robustness of this PN-A IASBR system in achieving long-term efficient nitrogen removal was also investigated. Stable partial nitritation with nitrite accumulation ratio of about 80% was firstly achieved in the IASBR. Then, PN-A process with total nitrogen removal of up to 81.5% was established due to the thriving of anammox bacteria Candidatus Kuenenia resulting from the reduction of the aeration rate. Molecular analysis showed that both bacterial and archaeal communities shifted greatly throughout the start-up stage and the PN-A stage. Besides bacterial genus Nitrosomonas, ammonium-oxidizing archaea (AOA) Candidatus Nitrososphaera with a high abundance of 3.44% also contributed to partial nitritation. Nitrospira was effectively restrained (abundance <1.6%) while methanogens co-existed with the aerobic and anaerobic nitrogen-conversion microorganisms. This study showed that IASBR configuration was efficient in starting up the PN-A process from return sludge, maintaining long-term efficient nitrogen removal and triggering the thrive of AOA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call