Abstract
Using hydrodynamic simulations we compute the metal enrichment history of the intergalactic medium (IGM). We show that galactic superwind (GSW) feedback can transport metals to the IGM and that the properties of simulated metal absorbers match observations. The distance of influence of GSW is typically limited to >0.5Mpc and within regions of overdensity >10. Most CIV and OVI absorbers are located within shocked regions of elevated temperature (T>2x10^4K), overdensity (>10), and metallicity ([-2.5,-0.5]). OVI absorbers have typically higher metallicity, lower density and higher temperature than CIV absorbers. For OVI absorbers collisional ionization dominates over the entire redshift range z=0-6, whereas for CIV absorbers the transition occurs at moderate redshift z~3 from collisionally dominated to photoionization dominated. We find that the observed column density distributions for CIV and OVI in the range log N cm^2=12-15 are reasonably reproduced by the simulations. The evolution of mass densities contained in CIV and OVI lines, Omega_CIV and Omega_OVI, is also in good agreement with observations, which shows a near constancy at low redshifts and an exponential drop beyond redshift z=3-4. For both CIV and OVI, most absorbers are transient and the amount of metals probed by CIV and OVI lines of column log N cm^2=12-15 is only ~2% of total metal density at any epoch. While gravitational shocks from large-scale structure formation dominate the energy budget (80-90%) for turning about 50% of IGM to the warm-hot intergalactic medium (WHIM) by z=0, GSW feedback shocks are energetically dominant over gravitational shocks at z > 1-2. Most of the so-called "missing metals" at z=2-3 are hidden in a warm-hot (T=10^{4.5-7}K) gaseous phase, heated up by GSW feedback shocks. Their mass distribution is broadly peaked at $\delta=1-10$ in the IGM, outside virialized halos.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.