Abstract
Direct-conversion transceivers are gaining increasing attention due to their low power consumption. However, they suffer from a serious in- and quadrature-phase (I/Q) imbalance problem. The I/Q imbalance can severely limit the achievable operating signal-to-noise ratio (SNR) at the receiver and, consequently, the supported constellation sizes and data rates. In this paper, we first investigate the effects of I/Q imbalance on orthogonal frequency division multiplexing (OFDM) receivers, and then propose a new I/Q imbalance compensation scheme. In the proposed method, a new statistic, which is robust against channel distortion, is used to estimate the I/Q imbalance parameters, and then the I/Q imbalance is corrected in the frequency domain. Simulations are performed to verify the effectiveness of the proposed method for I/Q imbalance compensation. The results show that the proposed I/Q imbalance compensation method can achieve bit error rate (BER) performance close to that in the ideal case without I/Q imbalance in additive white Gaussian noise (AWGN) or multipath environments. Furthermore, because no pilot information is required, this method can be applied in various standard communication systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have