Abstract
In this paper, we consider a ring of identical neurons with self-feedback and delays. Based on the normal form approach and the center manifold theory, we derive some formula to determine the direction of Hopf bifurcation and stability of the Hopf bifurcated synchronous periodic orbits, phase-locked oscillatory waves, standing waves, mirror-reflecting waves, and so on. In addition, under general conditions, such a network has a slowly oscillatory synchronous periodic solution which is completely characterized by a scalar delay differential equation. Despite the fact that the slowly oscillatory synchronous periodic solution of the scalar equation is stable, we show that the corresponding synchronized periodic solution is unstable if the number of the neurons is large or arbitrary even.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have