Abstract

We present generalised Lyapunov-Razumikhin techniques for establishing global asymptotic stability of steady-state solutions of scalar delay differential equations. When global asymptotic stability cannot be established, the technique can be used to derive bounds on the persistent dynamics. The method is applicable to constant and variable delay problems, and we illustrate the method by applying it to the state-dependent delay differential equation known as the sawtooth equation, to find parameter regions for which the steady-state solution is globally asymptotically stable. We also establish bounds on the periodic orbits that arise when the steady-state is unstable. This technique can be readily extended to apply to other scalar delay differential equations with negative feedback.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call