Abstract

A distributed optimal control problem for a semilinear parabolic partial differential equation is investigated. The stability of locally optimal solutions with respect to perturbations of the initial data is studied. Based on different types of sufficient optimality conditions for a local solution of the unperturbed problem, Lipschitz or Hölder stability with respect to perturbations are proved. Moreover, a particular example with semilinear equation, constant initial data, and standard quadratic tracking type objective functional is constructed that has at least two different locally optimal solutions. By the perturbation analysis, the existence of a problem with non-constant initial data is shown that also has at least two different locally optimal solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call