Abstract

In this paper, we prove the following assertion for an absorbing Markov decision process (MDP) with the given initial distribution, which is also assumed to be semi-continuous: the continuity of the projection mapping from the space of strategic measures to the space of occupation measures, both endowed with their weak topologies, is equivalent to the MDP model being uniformly absorbing. An example demonstrates, among other interesting scenarios, that for an absorbing (but not uniformly absorbing) semi-continuous MDP with the given initial distribution, the space of occupation measures can fail to be compact in the weak topology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.