Abstract

In this paper, we consider a L∞ functional derivative estimate for the first spatial derivatives of bounded classical solutions u:RN×[0,T]→R to the Cauchy problem for scalar second order semi-linear parabolic partial differential equations with a continuous nonlinearity f:R→R and initial data u0:RN→R, of the form,maxi=1,…,N⁡(supx∈RN⁡|uxi(x,t)|)≤Ft(f,u0,u)∀t∈[0,T]. Here Ft:At→R is a functional as defined in §1 and x=(x1,x2,…,xn)∈RN. We establish that the functional derivative estimate is non-trivially sharp, by constructing a sequence (fn,0,u(n)), where for each n∈N, u(n):RN×[0,T]→R is a solution to the Cauchy problem with zero initial data and nonlinearity fn:R→R, and for which there exists α>0 such thatmaxi=1,…,N⁡(supx∈RN⁡|uxi(n)(x,T)|)≥α, whilstlimn→∞⁡(inft∈[0,T]⁡(maxi=1,…,N⁡(supx∈RN⁡|uxi(n)(x,t)|)−Ft(fn,0,u(n))))=0.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.