Abstract

Infrared (IR) emission lead selenide (PbSe) quantum dots (QDs) have gained considerable attention in the last decade due to their potential applications in optoelectronic devices. However, the comprehensive applications of PbSe QDs have not been realized yet due to their high susceptibility to oxidation in air. In this paper, we demonstrate the stability enhancement of PbSe colloidal QDs via a post-synthetic ammonium chloride treatment and its applications in a solution-processed high-performance IR photodetector with a field-effect transistor (FET) configuration by reversely fabricating the PbSe active layer and polymethylmethacrylate (PMMA) dielectric layer. The responsivity and the specific detectivity of the FET-based photodetector Au(source, drain)/PbSe(52 nm)/PMMA(930 nm)/Au(gate) reached 64.17 mA W−1 and 5.08 × 1010 Jones, respectively, under 980 nm laser illumination with an intensity of 0.1 mW cm−2. Therefore, it provides a promising way to make a high-sensitivity near-IR/mid-IR photodetector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.