Abstract
Lead selenide (PbSe) quantum dots (QDs) are an attractive material for application in photovoltaic devices due to the ability to tune their band gap, efficient multiple exciton generation, and high extinction coefficients. However, PbSe QDs are quite unstable to oxidation in air. Recently there have been multiple studies detailing postsynthetic halide treatments to stabilize lead chalcogenide QDs. We exploit iodide-stabilized PbSe QDs in a model QD-sensitized solar cell configuration where zinc oxide (ZnO) single crystals are sensitized using cysteine as a bifunctional linker molecule. Sensitized photocurrents stable for >1 h can be measured in aqueous KI electrolyte that is usually corrosive to QDs under illumination. The spectral response of the sensitization extended out to 1700 nm, the farthest into the infrared yet observed. Hints of the existence of multiple exciton generation and collection as photocurrent, as would be expected in this system, are speculated and discussed.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have