Abstract
ABSTRACTIn this study, a method regarding frame lateral vibration control based on the state feedback of an additional oscillator is proposed, so as to improve the bogie hunting stability. The multi-objective optimisation method (MOOP), with two objective functions of the stability index and control effort, is solved by the NSGA-II algorithm to obtain the feedback gains. The frame lateral vibration control can effectively improve the bogie hunting stability according to the linear and non-linear analysis of a high-speed train bogie, in which a fault of the yaw damper and time delay in the control system are considered. The effect of the oscillator suspension parameters and time delay on the system stability and robustness are analysed. The results show that the damped vibration frequency of the oscillator should be equal to the bogie hunting frequency, but a harder oscillator suspension can be used to improve the hunting critical speed margin of the bogie control system. However, just as how the feeding the frame states back directly, a hard oscillator suspension will lead to instability in the control system at a certain time delay. Therefore, the improvement of bogie hunting stability and reduction of control system stability must be considered when optimising the oscillator parameters. For the 350 km/h train bogie covered in this study, the optimal mass, natural frequency and damping ratio of the additional oscillator are acquired.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.