Abstract

A significant amount of renewable energy based power is being integrated at the distribution or sub-transmission level worldwide, known as Distributed Generation (DG). And the Doubly-Fed Induction Generator (DFIG) based wind turbine is one of the utmost important branches of DG development. However, the DFIGs suffer from high sensitivity from system disturbance that they cannot keep connection with utility under severe faults. This paper proposed to apply a superconducting fault current limiter (SFCL) in a distribution network with DFIG to limit the short-circuit currents so as to improve system stability. This presented study is aiming at providing deeper insight into the implication of the two main SFCL deployment strategies, DG-side and feeder deployment. The study is carried out using PSCAD/EMTDC with special focuses on stator currents, voltage sags, active and reactive power of the DFIG-based wind turbine effected by the short-circuit faults and the SFCL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.