Abstract

With increased penetration of wind energy as a renewable energy source, there is a need to keep wind turbines connected to the grid during different disturbances such as grid faults. In this paper, the use of superconducting fault current limiter (SFCL) is proposed to reduce fault current level at the stator side and improve the fault ride-through (FRT) capability of the system. To highlight the proposed technique, a doubly fed induction generator (DFIG) is considered as a wind-turbine generator, where the whole system is simulated using PSCAD/EMTDC software. Detailed simulation results are obtained with and without SFCL considering stator and rotor currents. In addition, the voltage profile at the generator terminals is analyzed. The effect of limiting resistance value is also investigated. The obtained results ensure that the SFCL is effective in decreasing the fault current. Moreover, both the voltage dip at the generator terminals and the reactive power consumption from the grid are decreased during the fault. The voltage dip characteristics are discussed in accordance with international grid codes for wind turbines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call