Abstract

With the continuous increase of energy consumption, the capacities of renewable energy generations are being expanded. The rapid increase of wind power penetration necessitates keeping bulk wind power generators connected to the grid during abnormal operating conditions, especially grid short circuit. Improving the fault ride-through (FRT) capability of doubly-fed induction generator (DFIG)-based wind turbines by superconducting fault current limiters (SFCLs) is introduced in this paper. The proposed FRT technique is designed to enhance the reliability and stability of the system. Comprehensive models of wind turbine, DFIG, control systems and SFCL under different wind turbulences are accomplished in Matlab/Simulink environment. DFIG stator and rotor currents are traced with and without the SFCL-based technique. Also, the DFIG terminal voltages, dc-link voltage, real and reactive power magnitudes are examined. Compared to the conventional FRT methods, the introduced SFCL-based FRT techniques superior and complies with the global grid codes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.