Abstract
According to the production bias model, glissile defect clusters and small dislocation loops play an important role in the microstructural evolution during irradiation under cascade damage conditions. The atomic scale computer simulations carried out in recent years have clarified many questions about the structure and properties of glissile clusters of self-interstitial atoms that are formed directly in the cascade volume. It has been found that such clusters consist of sets of crowdions and are highly mobile in the crowdion direction. Very recently, one-dimensional glide of similar character has been observed in the computer simulation of small vacancy loops in α-Fe. In the present paper we summarise results obtained by molecular dynamics simulations of defect clusters and small dislocation loops in α-Fe(bcc) and Cu(fcc). The structure and stability of vacancy and interstitial loops are reviewed, and the dynamics of glissile clusters assessed. The relevance and importance of these results in establishing a better understanding of the observed differences in the damage accumulation behaviour between bcc and fcc metals irradiated under cascade damage conditions are pointed out.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.