Abstract
Nano-compression and nano-tensile tests were used to investigate the behavior of HT-9 steel neutron irradiated to 4.29 dpa at 469°C. The deformation of both as-received and neutron irradiated HT-9 was monitored in situ with a transmission electron microscope, which allowed linking microstructure of the material with the evolution of mechanical properties and identifying the mechanisms governing irradiation-induced hardening of these steels. In nano-compression tests, dislocation-mediated deformation is the deformation mechanism in HT-9 steels irradiated at elevated temperatures. In nano-tensile tests, while dislocations contribute to hardening, grain boundaries determine the deformation mechanisms and eventual fracture of HT-9. The paper further examines the size effect for nano-mechanical tests by varying sample dimensions and comparing obtained results to the micro- and bulk-scale mechanical test data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.