Abstract
We study the dynamics of a SEIR epidemic model with nonlinear treatment function, that takes into account the limited availability of resources in community. Under some conditions we prove the existence of two possible equilibria: the disease-free equilibrium and the endemic equilibrium. Using Lyapunov's method and Li's geometrical approach, We also show that the reproduction number R0 is a threshold parameter: the disease-free equilibrium is globally asymptotically stable when the basic reproduction number is less than unity and the unique endemic equilibrium is globally asymptotically stable when the basic reproduction number is greater than this critical value. In the end, we give some concluding remarks concerning the role of treatment on the epidemic propagation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.