Abstract

Linear Parameter-Varying (LPV) systems with jumps and piecewise differentiable parameters is a class of hybrid LPV systems for which no tailored stability analysis and stabilization conditions have been obtained so far.11Except, of course, in the conference version of this work. We fill this gap here by proposing an approach based on a clock- and parameter-dependent Lyapunov function yielding stability conditions under both constant and minimum dwell-times. Interesting adaptations of the latter result consist of a minimum dwell-time stability condition for uncertain LPV systems and LPV switched impulsive systems. The minimum dwell-time stability condition is notably shown to naturally generalize and unify the well-known quadratic and robust stability criteria all together. Those conditions are then adapted to address the stabilization problem via timer-dependent and a timer- and/or parameter-independent (i.e. robust) state-feedback controllers, the latter being obtained from a relaxed minimum dwell-time stability condition involving slack-variables. Finally, the last part addresses the stability of LPV systems with jumps under a range dwell-time condition which is then used to provide stabilization conditions for LPV systems using a sampled-data state-feedback gain-scheduled controller. The obtained stability and stabilization conditions are all formulated as infinite-dimensional semidefinite programming problems which are then solved using sum of squares programming. Examples are given for illustration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call