Abstract
A novel single-phase trivalent europium activated red-emitting SrLaNaTeO6 phosphor was first synthesized in a process of traditional high-temperature solid-state. The phase purity, morphology, and spectroscopy of the prepared phosphor were analyzed. Under 395 nm excitation, the photoluminescence (PL) spectra of the SrLaNaTeO6:Eu3+ products mainly contained five dominant sharp peaks. The intense red emission peak at 615 nm was the typical 5D0→7F2 electric dipole transition of Eu3+. The optimum product of high quenching concentration was the SrLaNaTeO6:0.90Eu3+, which reached a high internal quantum efficiency (IQE) of 90.6%. The SrLaNaTeO6:0.90Eu3+ was estimated to have Rc of 6.57 Å and possessed high color purity of 100.0%. The phosphors exhibited excellent thermal stability and high activation energy (Ea = 0.29 eV). The prepared white light-emitting diode (WLED) had a high color rendering index (CRI) Ra of 92 and a low correlated color temperature (CCT) of 5008 K. In conclusion, the phosphors have potential as red components for WLEDs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have