Abstract

White light-emitting diodes (LEDs) with high color rendering index (CRI) and low correlated color temperature (CCT) are desirable for next-generation solid-state lighting. In this work, we demonstrated an efficient near-UV-excited cyan-emitting phosphor based on Ce3+-doped Ca2LuHf2Al3O12 (CLHAO) garnet, which could be used to cover the cyan gap for fabricating high-CRI warm-white LEDs. We found that the CLHAO:Ce3+ samples exhibited a broad excitation band in the 300–450 nm wavelength range peaking at 400 nm, and upon 400 nm excitation they showed broad cyan emission bands in the 420–600 nm spectral region with peak positions ranging from 477 to 493 nm. The optimal CLHAO:0.02Ce3+ sample had CIE color coordinates of (0.160, 0.255), and its internal and external quantum efficiencies were measured to be 84.3% and 60.8%, respectively. Impressively, the luminescence intensity of CLHAO:0.02Ce3+ sample at 423 K still remained at 62% of the initial value at 303 K, and the chromaticity shift was calculated to be as low as 1.7 × 10−2, revealing its high thermal stability and color stability at a higher temperature. Finally, a warm-white LED device (CCT = 3,194 K) was fabricated by combining CLHAO:0.02Ce3+ cyan phosphors with commercial blue/green/red tricolor phosphors, showing bright white-light emission with a high CRI of 89.4, which was superior to that of another warm-white LED device (CRI = 83.2) fabricated without CLHAO:0.02Ce3+ cyan phosphors. These outstanding luminescence properties of CLHAO:Ce3+ cyan phosphors illustrated that they offer a new feasible approach for the production of high-CRI warm-white LEDs toward high-color-quality solid-state lighting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call