Abstract

With the development of the cloud-based Internet of Things (IoT), people and things can request services, access data, or control actuators located thousands of miles away. The entity authentication of the remotely accessed devices is an essential part of the security systems. In this vein, physical unclonable functions (PUFs) are a hot research topic, especially for generating random, stable, and tamper-resistant fingerprints. This article proposes a lightweight, robust static random access memory (SRAM)-PUF-based entity authentication scheme to guarantee that the accessed end devices are trustable. The proposed scheme uses challenge-response pairs (CRPs) represented by reordered memory addresses as challenges and the corresponding SRAM cells' startup values as responses. The experimental results show that our scheme can efficiently authenticate resources-constrained IoT devices with a low computation overhead and small memory capacity. Furthermore, we analyze the SRAM-PUF by testing the PUF output under different environmental conditions, including temperature and magnetic field, in addition to exploring the effect of writing different values to the SRAM cells on the stability of their startup values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.