Abstract

Sputter-deposited Au, Pt, Cr, Ni and Cu contacts for n-type GaN films were studied using current–voltage (I–V) and capacitance–voltage (C–V) measurements. These films were grown by molecular beam epitaxy (MBE), heteroepitaxially on the basal plane of sapphire. The contacts were non-ideally rectifying in nature. Assuming that the non-ideality was due to effects of series resistance and recombination current, a computer curve fitting procedure was employed that enabled the separation of these effects from the thermionic emission current, thereby permitting the calculation of the barrier height. An analysis of the results indicates that the barrier heights for metal contacts on GaN are determined by the difference between the metal and the semiconductor electronegativities and substantially influenced by metal induced gap states (MIGS)/sputtering damage induced surface states (SDISS). The concentration of metal induced gap states/sputtering induced damage states was determined to be approximately 2.7 × 1013 states cm−2 eV−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.