Abstract

The Schottky barrier heights of silver and lead contacts on n-type GaN (0001) epilayers were determined from current-voltage characteristics. The zero-bias barrier heights and the ideality factors were found to be linearly correlated. Similar observations were previously reported for metal contacts on Si (111) and GaAs (110) surfaces. The barrier heights of ideal Schottky contacts are characterized by image force lowering of the barrier only. This gives an ideality factor of 1.01. From our data we obtain barrier heights of 0.82 eV and 0.73eV for ideal Ag and Pb contacts on GaN, respectively. The metal-induced gap states (MIGS) model predicts the barrier heights of ideal Schottky contacts on a given semiconductor to be linearly correlated with the electronegativities of the metals. The two important parameters of this MIGS-and-electronegativity model are the charge neutrality level (CNL) of the MIGS and a slope parameter. The CNL may be calculated from the dielectric band gap and using the empirical tight-binding method. The slope parameters are given by the optical dielectric constant of the respective semiconductor. The predictions of the MIGS model for metal/GaN contacts are confirmed by the results presented here and by barrier heights previously reported by others for Au, Ti, Pt, and Pd contacts on GaN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call