Abstract

We study the spread of Rényi entropy between two halves of a Sachdev-Ye-Kitaev (SYK) chain of Majorana fermions, prepared in a thermofield double (TFD) state. The SYK chain model is a model of chaotic many-body systems, which describes a one-dimensional lattice of Majorana fermions, with spatially local random quartic interaction. We find that for integer Rényi index n > 1, the Rényi entanglement entropy saturates at a parametrically smaller value than expected. This implies that the TFD state of the SYK chain does not rapidly thermalize, despite being maximally chaotic: instead, it rapidly approaches a prethermal state. We compare our results to the signatures of thermalization observed in other quenches in the SYK model, and to intuition from nearly-AdS2 gravity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.