Abstract

Motivated by recent studies of the information paradox in (1+1)-D anti-de Sitter spacetime with a bath described by a (1+1)-D conformal field theory, we study the dynamics of second Ŕenyi entropy of the Sachdev-Ye-Kitaev (SYK) model (χ) coupled to a Majorana chain bath (ψ). The system is prepared in the thermofield double (TFD) state and then evolved by HL + HR. For small system-bath coupling, we find that the second Rényi entropy {S}_{upchi L,upchi R}^{(2)} of the SYK model undergoes a first order transition during the evolution. In the sense of holographic duality, the long-time solution corresponds to a “replica wormhole”. The transition time corresponds to the Page time of a black hole coupled to a thermal bath. We further study the information scrambling and retrieval by introducing a classical control bit, which controls whether or not we add a perturbation in the SYK system. The mutual information between the bath and the control bit shows a positive jump at the Page time, indicating that the entanglement wedge of the bath includes an island in the holographic bulk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.