Abstract

We investigate the thermalization of Sachdev–Ye–Kitaev (SYK) models coupled via random interactions following quenches from the perspective of entanglement. Previous studies have shown that when a system of two SYK models coupled by random two-body terms is quenched from the thermofield double state with sufficiently low effective temperature, the Rényi entropies do not saturate to the expected thermal values in the large-N limit. Using numerical large-N methods, we first show that the Rényi entropies in a pair SYK models coupled by two-body terms can thermalize, if quenched from a state with sufficiently high effective temperature, and hence exhibit state-dependent thermalization. In contrast, SYK models coupled by single-body terms appear to always thermalize. We provide evidence that the subthermal behavior in the former system is likely a large-N artifact by repeating the quench for finite N and finding that the saturation value of the Rényi entropy extrapolates to the expected thermal value in the N → ∞ limit. Finally, as a finer grained measure of thermalization, we compute the late-time spectral form factor of the reduced density matrix after the quench. While a single SYK dot exhibits perfect agreement with random matrix theory, both the quadratically and quartically coupled SYK models exhibit slight deviations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call