Abstract

This paper deals with the problem of predetermining the spray angle and uniformity of the flat fan sprayer with a semicircular impact surface for the intra-soil application of liquid mineral fertilizers. The jet impact on a round splash plate and radial atomization properties are investigated theoretically, the formation features of the spray with an obtuse angle are studied in a geometrical way, and the design search of the nozzle shape and optimization calculations are performed using computational fluid dynamics (CFD) simulations and then verified experimentally. It was revealed that the spray rate and spray angle can be adjusted by changing the parameter s, and when the spray angle is within s = 0–0.2 mm, it forms spray angles with range of 140°–175°. The spraying angle, in turn, shows the potential length of the tillage knife in accordance with the undersoil cavity dimensions. A spray uniformity of up to 74% was achieved, which is sufficient for applied studies and for intra-soil application operations. According to the investigations and field experiments, it can be concluded that the designed nozzle is applicable for the intra-soil application of liquid mineral fertilizers. The use of flat fan nozzles that form a spraying band under the soil cavity and along the entire length of the tillage knife ensures a highly efficient mixing process, the liquid mineral fertilizers with treated soil (particles) positively contributing to plant maturation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call