Abstract
In this paper, we present an approach for the development of spoken dialog systems based on the statistical modelization of the dialog manager. This work focuses on three points: the modelization of the dialog manager using Stochastic Finite-State Transducers, an unsupervised way to generate training corpora, and a mechanism to address the problem of coverage that is based on the online generation of synthetic dialogs. Our proposal has been developed and applied to a sport facilities booking task at the university. We present experimentation evaluating the system behavior on a set of dialogs that was acquired using the Wizard of Oz technique as well as experimentation with real users. The experimentation shows that the method proposed to increase the coverage of the Dialog System was useful to find new valid paths in the model to achieve the user goals, providing good results with real users.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.