Abstract
The accuracy of numerical solutions near singular points is crucial for numerical methods. In this paper we develop an efficient mechanical quadrature method (MQM) with high accuracy. The following advantages of MQM show that it is very promising and beneficial for practical applications: (1) the $ O(h_{\rm {max}}^{3})$ convergence rate; (2) the $O(h_{\rm {max}}^{5})$ convergence rate after splitting extrapolation; (3) Cond = $O(h_{\rm {min}}^{-1})$ ; (4) the explicit discrete matrix entries. In this paper, the above theoretical results are briefly addressed and then verified by numerical experiments. The solutions of MQM are more accurate than those of other methods. Note that for the discontinuous model in Li et al. (Eng Anal Bound Elem 29:59---75, 2005), the highly accurate solutions of MQM may even compete with those of the collocation Trefftz method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.