Abstract
The development of a high-energy-density lithium–oxygen (Li–O2) battery is mainly determined by highly efficient electrocatalysts with excellent activity and stability, facilitating reversible oxygen redox reactions. Engineering the electron spin state provides a novel strategy to enhance the electrocatalytic activity of electrode materials. In this work, sulfur vacancy-enriched spinel NiCo2S4 (Vs-NiCo2S4) with high spin polarization is designed as an effective electrocatalyst for high-performance Li–O2 batteries. Subtle lattice distortion is induced by sulfur vacancy in spinel Vs-NiCo2S4, which strongly contributes to the formation of high spin states of Co3+ (HS, t2g4eg2) from the low spin states of Co3+ (LS, t2g6eg0) at active octahedral sites. The electron transitions of Co3+ from low to high spin enable the increase of the spin polarization and produce abundant unpaired electrons in the 3d orbital of Co3+, enhancing the adsorption of oxygen intermediates and boosting the electron transfer process of oxygen redox reactions. Density functional theory calculations indicate that the spin magnetic moment of Co3+ in Vs-NiCo2S4 is raised in comparison to that in NiCo2S4, which improves the catalytic activity of the material via lowering the energy barrier for electron transfer. Experimentally, Vs-NiCo2S4-based Li–O2 batteries exhibit a large specific capacity of 8707.0 mAh g–1 and long cycling life of 487 h. Furthermore, in situ differential electrochemical mass spectrometry results show that the ratio of electron to oxygen during oxygen redox reactions is close to 2, demonstrating the favorable formation and decomposition of Li2O2 on Vs-NiCo2S4 in a Li–O2 battery. This work presents a powerful strategy to rationally design efficient electrocatalysts via spin engineering to boost oxygen redox reaction kinetics in Li–O2 batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.