Abstract

We analyse the electrical response of narrow graphene nanogaps in search for transport signatures stemming from spin-polarized edge states. We find that the electrical transport across graphene nanogaps having perfectly defined zigzag edges does not carry any spin-related signature. We also analyse the magnetic and electrical properties of nanogaps whose electrodes have wedges that possibly occur in the currently fabricated nanogaps. These wedges can host spin polarized wedge low-energy states due to the bipartite nature of the graphene lattice. We find that these spin-polarized low-energy modes give rise to low-voltage signatures in the differential conductance and to distinctive features in the stability diagrams. These are caused by fully spin-polarized currents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.