Abstract

We consider a hybrid quantum Hall-superconductor system, where a superconducting finger with oblique profile is wedged into a two-dimensional electron gas in the presence of a perpendicular magnetic field, as considered by Lee et al., Nat. Phys. 13, 693 (2017). The electron gas is in the quantum Hall regime at filling factor $\ensuremath{\nu}=1$. Due to the Meissner effect, the perpendicular magnetic field close to the quantum Hall-superconductor boundary is distorted and gives rise to an in-plane component of the magnetic field. This component enables nonlocal crossed Andreev reflection between the spin-polarized chiral edge states running on opposite sides of the superconducting finger, thus opening a gap in the spectrum of the edge states without the need of spin-orbit interaction or nontrivial magnetic textures. We compute numerically the transport properties of this setup and show that a negative resistance exists as a consequence of nonlocal Andreev processes. We also obtain numerically the zero-energy local density of states, which systematically shows peaks stable to disorder. The latter result is compatible with the emergence of Majorana bound states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.