Abstract

This study is an in-depth exploration of the charge storage mechanisms of KCoF3 in 1 M Na2SO4 mild aqueous electrolytes via an array of ex situ/in situ physicochemical/electrochemical methods, especially the electrochemical quartz crystal microbalance (EQCM) technique, showing a combination of conversion, insertion/extraction and adsorption mechanisms. Specifically, during the first charge phase, Co(OH)2 is formed/oxidized into amorphous CoOOH and Co3O4, and then CoOOH undergoes partial proton extraction to yield CoO2, which is simultaneously accompanied by the transformation of Co3O4 into CoOOH and (hydrated) CoO2. During the first discharge process, the partial insertion of H+ into (hydrated) CoO2 leads to the formation of CoOOH and Co3O4, with the conversion of Co3O4 into CoOOH and both Co3O4 and CoOOH undergoing further transformations into (hydrated) Co(OH)2via the insertion of H+. This work offers valuable references for the development of aqueous energy storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.