Abstract

We present accurate quantum Monte Carlo (QMC) calculations which enabled us to determine the structure, spin multiplicity, ionization energy, dissociation energy, and spin-dependent electronic gaps of the vanadium-benzene system. From total and ionization energy we deduce a high-spin state with vastly different energy gaps for the two spin channels. For this purpose we have used a multistage combination of techniques with consecutive elimination of systematic biases except for the fixed-node approximation in QMC calculations. Our results significantly differ from the established picture based on previous less accurate calculations and point out the importance of high-level many-body methods for predictive calculations of similar transition metal-based organometallic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.