Abstract
By using real-space renormalization group (RG) methods, we show that spin glasses in a field display a new kind of transition in high dimensions. The corresponding critical properties and the spin-glass phase are governed by two nonperturbative zero-temperature fixed points of the RG flow. We compute the critical exponents and discuss the RG flow and its relevance for three-dimensional systems. The new spin-glass phase we discovered has unusual properties, which are intermediate between the ones conjectured by droplet and full replica symmetry-breaking theories. These results provide a new perspective on the long-standing debate about the behavior of spin glasses in a field.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have