Abstract

We investigate the propagation of spin waves in two-component mixtures of one-dimensional Bose gases interacting through repulsive contact potentials. By using quantum MonteCarlo methods we calculate static ground-state properties, such as the spin susceptibility and the spin structure factor, as a function of the coupling strengths and we determine the critical parameters for phase separation. In homogeneous mixtures, results of the velocity of spin waves and of its softening close to the critical point of phase separation are obtained by means of hydrodynamic theory and a sum-rule approach. We quantify the nondissipative drag effect, resulting from the Andreev-Bashkin current-current interaction between the two components of the gas, and we show that in the regime of strong coupling it causes a significant suppression of the spin-wave velocity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.