Abstract

The spin-dependent conductance and magnetoresistance ratio (MRR) for a semiconductor heterostructures consisting of two magnetic barriers with different height and space have been investigated by the transfer-matrix method. It is shown that the splitting of the conductance for parallel and antiparallel magnetization configurations results in tremendous spin-dependent MRR, and the maximal MRRs reach 5300% and 3800% for the magnetic barrier spaces W = 81.3 and 243.9 nm, respectively. The obtained spin-filtering transport property of nanostructures with magnetic barriers may be useful to magnetic-barrier-based spintronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call