Abstract
In this paper, we present an energy and area efficient spike neural network (SNN) processor based on novel spike counts based methods. For the low cost SNN design, we propose hardware-friendly complexity reduction techniques for both of learning and inferencing modes of operations. First, for the unsupervised learning process, we propose a spike counts based learning method. The novel learning approach utilizes pre- and post-synaptic spike counts to reduce the bit-width of synaptic weights as well as the number of weight updates. For the energy efficient inferencing operations, we propose an accumulation based computing scheme, where the number of input spikes for each input axon is accumulated without instant membrane updates until the pre-defined number of spikes are reached. In addition, the computation skip schemes identify meaningless computations and skip them to improve energy efficiency. Based on the proposed low complexity design techniques, we design and implement the SNN processor using 65 nm CMOS process. According to the implementation results, the SNN processor achieves 87.4% of recognition accuracy in MNIST dataset using only 1-bit 230 k synaptic weights with 400 excitatory neurons. The energy consumptions are 0.26 pJ/SOP and 0.31 μJ/inference in inferencing mode, and 1.42pJ/SOP and 2.63 μJ/learning in learning mode of operations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Biomedical Circuits and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.